A Secure Mobile OTP Token

by: Fred Cheng FPC Consultancy International Technological University fredtcheng@yahoo.com

Mobilware 2010 July 1, 2010

Topics

- Introduction
- Background & Selected Related Works
- Base Cipher
- Implementing a Secure Mobile OTP Token
- Security Analysis
- Conclusion

Introduction

- Using One-time Password (OTP) for remote authentication becomes popular.
- It is natural to have mobile phone as an OTP token.
- This paper proposes an encryption cipher to build a secure Mobile OTP token that can resist certain security attacks.
- The token also preserves full compliance and interoperability with existing infrastructure.

Mobilware 2010 July 1, 2010

Why OTP & OTP Token?

- OTP: One-time Password
 - For network remote authentication
- Security weakness with basic authentication
 - Publicly known UserID
 - John Dole at ACE Corp. \rightarrow j.dole@ace.com
 - Static Password

Mobilware 2010 July 1, 2010

Password Security Attack

Attacks

Dictionary & Bruteforce Attack

MITM Replay Attack: Capture the static password

Seed-tracing (MITM), Shouldersurfing, & ...

Solutions

Increase password complexity (OTP)

Dynamic password (OTP)

No simple and easy solution

Mobilware 2010 July 1, 2010

Dynamic Password

- Proposed by Leslie Lamport
 - In his landmark 1981 ACM Paper
- The Algorithm
 - Using a One-way Function F
 - An initial seed *x* & event counter *i*
 - Dynamic session password
 - $F(x), F(F(x)), ..., F^{i}(x)$
 - Each password is only used once in one session.
- The beginning of a One-time Password (OTP) development.

Ref [22]: Lamport, L., "Password Authentication with Insecure Communication". Communications of the ACM, 24(11): 770-772, Nov. 1981.

Mobilware 2010 July 1, 2010

OTP Token

- Various OTP algorithms and implementations were introduced and marketed
 - Expensive, in-compatible & non-interoperable
- OATH: Initiative for Open AuTHentication
 - Free Standard, Compatibility, Interoperability & Low Cost
 - OTP Algorithm RFC4226

Variety of OTP Tokens

- Hardware
- Software
- Mobile OTP Token
 - Embeds OTP function in cellular phone

Mobilware 2010 July 1, 2010

Stand-alone Mobile OTP Token

- Cellular phone is an OTP Token
 - Generating OTP code
 - Replacing the dedicated H/W or S/W OTP token
- Software based token
 - Seed (K) and Counter (C) are stored inside phone
- Ref: [1] [7] [8]

Out of Band Transceiver

 Cellular Network K&C OK Secure out of band channel Data Phone (using SMS) Transceiver of the OTP code Seed (K) and C storage ΟΠ At server or computer Limitation - Unreliable & untimely SMS OTP!!! Cellular service coverage Login Req • Ref: [2] [9] [10] **OTP**_c K&C A Secure Mobile OTP Token Mobilware 2010 July 1, 2010 Fred Cheng

Mobile Authenticator

- Authentication
 - Provided by cellular system
 - New Protocols [9][10]
 - SIM (user credentials)
- Phone
 - Contains SIM
- Limitation
 - Cellular service coverage
- Ref: [3][13][14][15][16][17][18]

Mobilware 2010 July 1, 2010

Mobile OTP Solutions

Items Category	Stand Alone Token	Out of Band TXR	Mobile Authenticator	
Role of phone	Computational platform	Transceiver of OTP code	Part of the authenticator	
OTP generation	Phone	Phone or Server	Phone and Server	
OTP submission	Through PC	SIM & SMS	SIM & Protocol	
Type of phone	2.5G & up	2.5G & up	3G & up	
Simple usability	Yes	No	No	
Low phone \$/m	Yes (zero)	No (SMS Plan)	No (3G Data Plan)	
No cellular limitation	Yes	No	No	
Compatibility & Interoperability	Yes	No	No	
No system change	Yes	No (additional H/W,S/W)	No (complex system)	
Protect secrets	No	Yes	Yes/ No	
MITM attack safe	No	No	Yes	
Shoulder-surfing attack safe	No	No	?	
Mobilware 2010	A Secure Mo	bile OTP Token		

July 1, 2010

Low Cost Mobile OTP Token

- Stand-alone Mobile Token has its merits
 - Works with existing authentication infrastructure
 - Low cost deployment & supporting
 - No cell coverage limitation
- Need to solve
 - Protecting the secrecies
 - Seed (K) and counter value (C)
 - Protecting security attacks
 - MITM seed tracing
 - Shoulder-surfing

Mobilware 2010 July 1, 2010

Requirements & Solutions

An Event-based OATH Mobile OTP Token

 \square

 \square

Security Protection

Requirements

Preserve phone power

Compatibility & Interoperability

Protect local confidential data

Resist security attack

OTP Seed Tracing Shoulder-surfing Solutions

- Less computation & local code
 - Using same OTP algorithm
- Rubbing Encryption Algorithm
- Rubbing Encryption Algorithm
- OATH OTP
- New solution
- New solution

Mobilware 2010 July 1, 2010

Rubbing Encryption Algorithm

 A secure scramble algorithm that uses complex key

Features

Key embedded in H/W token

Decrypting w/o Entering Key

Long & Complex Key

Secure Scramble Algorithm

Benefits

No need to memorize key
Using long & complex key
High security with short plaintext
No complex computation

Mobilware 2010 July 1, 2010

REAL Cipher - Math

Given a numeric image X containing T characters selected from Y numerals,

 $X_1 X_2 X_3 \dots X_i \dots X_t$

The occurrence possibility (P_i) of a numeral Y_i (assumed appears N_{vi} times) is,

$$P_{i} = N_{yi} / T$$
(1)

Following Shannon Entropy Theory, Image X's uncertainty H(X) is as follows.

$$H(X) = -\sum_{i=1}^{T} P_i (Log_2 P_i)$$
(2)

When each numeral has equal chance to be displayed and N_{yi} are all equal (N), image X reaches a Equiprobable state and has the highest uncertainty. [20]

$$T = NY$$
, (3)
 $P_i = N_{yi} / T = N / NY = 1 / Y = P$. (4)

Mobilware 2010 July 1, 2010

REAL Cipher - Math

Substituting (4) into (2), Image X's uncertainty H(X) becomes

$$H(X) = T (Log_2 Y) / Y.$$
(5)

Following similar procedure, each symbol's uncertainty H(S) can be found as follows

$$H(S) = T (Log_2 Y) / Y^2$$
. (6)

REAL Operating Procedure

Mobilware 2010 July 1, 2010

REAL Image-Token-Key (Step 1&2)

- REAL Image Generation
 - Security level setting
 - Screen size, font size, token size, usability and other factors
- REAL Hardware Token
 - Low cost, easy to carry and use
- REAL Key
 - Code pointer as key
- Token can be of multi-dimensions
 - REAL key can be in multi-dimensional form

REAL token front side

REAL token back side

REAL Image T = 40 $Y = 0 \sim 9$ numeral

Mobilware 2010 July 1, 2010

Encryption with REAL Key (step 3~6)

- REAL key position $\rightarrow W_6 \sim W_0$
- Pre-generated OTP Code (= 807235)
 - $D_5 = 8$, $D_4 = 0$, $D_3 = 7$, $D_2 = 2$, $D_1 = 3$ and $D_0 = 5$
 - − Program Digit: $W_6 = D_6 = 3$ (odd → front key, even → backside key)
- Randomly place other numerals to make X an Equiprobable Image

Placement of OTP Code	Key Locations	W ₆	W ₅	W ₄	W ₃	W ₂	\mathbf{W}_{1}	W ₀
	Ι	D_6	D_5	D ₄	D ₃	D ₂	D ₁	D ₀
	II	3	8	0	7	2	3	5

Final REAL Image X = DATA(i) = Concatenate $(X_{40} \sim W_i \sim X_1)$ X₄₀ X₃₉ .. 3 .. X_k .. 8 .. X_j .. 0 .. X_i .. 7 .. X_h .. 2 .. X_g .. 3 .. X_f .. 5 .. X₂ X₁

Mobilware 2010 July 1, 2010

Offset & HI Generation (step 7~8)

- Offset is generated from the last Hashed Index (HI)
 - Reuse OATH OTP generation algorithm

Delta Table Generation (Step 9~12)

- Delta(i) = Bit Ex-OR (Offset(i), Data(i))
- Delta Table (DT)
 - Compilation of Delta(i) with HI(i)
 - Rearranging Delta(i) order according to the value of HI(i)
 - Ensure higher security with the local storage
- User_Key = HMAC-SHA-1(HMAC-SHA-1(UC, UC)), UC)

Stored in phone

Mobilware 2010 July 1, 2010

REAL Decryption (Step A~L)

- Reverse previous steps
- Place H/W token over the numerical image (beginning with token's front side 1st)
- Rubbing sequence
 - 1st Pointer indicates front (odd number) and backside (even number) key selection
 - Reading from 2nd pointer: Top/Down or Left/Right and clockwise

Code = **478818**

Mobilware 2010 July 1, 2010

Security Attacks – Seed Tracing

- OTP code is generated by a known algorithm with a static SEED
- Collecting codes & comparing to code database
 - Finding Pseudo Random Sequence

 $OTP_1, OTP_2, OTP_3, OTP_4, OTP_5, OTP_6, \dots \rightarrow OTP Seed$

- Solution
 - Multi-Seeding OTP (Ms.OTP)
 - To break the Pseudo Random Sequence
 - Increase OTP code randomness

Mobilware 2010 July 1, 2010

Multiple Seeding OTP (Ms.OTP)

- A REAL Bi-Seeding Mobile OTP Token
 - One H/W token with two encryption keys
 - One REAL key to encrypt codes from one OTP Seed
 - Front 1st pointer to show which key to rub the OTP code
- Randomly mixing OTP codes from either Seed
 - Breaking pseudo random sequence from collected codes
 - Server records the mixing pattern during the provisioning

OTP_{seed-A}, OTP_{seed-B}, OTP_{seed-A}, OTP_{seed-A}, OTP_{seed-B}, OTP_{seed-A}, OTP_{seed-B}, ...

Front side to encrypt codes using Seed A

Back side to encrypt codes using Seed B

Mobilware 2010 July 1, 2010

Multiple Seeding OTP (Ms.OTP)

	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Notes
A1	3	8	0	7	2	3	5	Seed A, Token front side
B 1	6	4	7	8	8	1	8	Seed B, Token back side

Mobilware 2010 July 1, 2010

Security Attacks – Shoulder-surfing

- Secretly observing and collecting either OTP codes or token pointer locations
 - To trace OTP Seed or
 - To trace REAL encryption keys

OPT code = 807235

- Solution
 - Ms.OTP \rightarrow Preventing OTP Seed tracing
 - Multi-Random OTP (Mr.OTP)
 - Preventing REAL key tracing
 - Breaking code to the pointer's physical locations

Mobilware 2010 July 1, 2010

Multiple Random OTP (Mr.OTP)

- 1st pointer's code (N_{1f} or N_{1b}) value provides the seed for creating the extra randomness
- Each code value adds the 1st pointer's code value and drops the 10s digit if the sum is greater than 10

$$D_{if} = (Value of N_{1f} + Value of N_{(7-i)f}) \mod 10$$

OTP Code = **130568**

Mobilware 2010 July 1, 2010

REAL Secure Mobile OTP Token

- Resists OTP Seed-tracing and Shoulder-surfing attacks
- REAL Secure Mobile OTP Token = Ms.OTP + Mr.OTP

Other Security Analysis

- Phone is lost or stolen
 - Have REAL Image w/o H/W token (if breaks the U_K 1st)

Possibility $(P_1) = 1/C(40, 6) = 2.6 \times 10^{-7}$

- Decrypt codes from Delta Table directly
 Needs user credential (U_K) & HI values
- H/W token is lost, stolen or secretly copied
 - No phone (REAL Image) Possibility $(P_2) = 1 \times 10^{-7}$
- H/W token & DT are secretly copied

Protected by user credential (U_K)

• Brute-force guess possibility = 1×10^{-6}

Mobilware 2010 July 1, 2010

Conclusion

- Rubbing Encryption Algorithm (REAL)
 - A multi-dimensional secure cipher with long and complex keys
 - Provides high security level encryption for short length plaintext
- A REAL Secure Mobile OTP Token
 - Securely protects local stored confidential data
 - Resists MITM Seed-tracing and Shoulder-surfing attacks
 - Low cost, compatible & interoperable with existing authentication infrastructures
- Further Work
 - To explore more apps. on REAL multi-dimension, multi-key features and improve the usability against desired security level
 - Example:
 - "A Novel Rubbing Encryption Algorithm and The Implementation of a Web-based One-time Password Token", COMPSAC 2010. [23]

Mobilware 2010 July 1, 2010

THANKS!

Q & A

Mobilware 2010 July 1, 2010